Argonneé

NATIONAL LABORATORY

Nekbone

Scott Parker
Argonne
Leadership
Computing
Facility

What is Nek5000?

= Spectral element CDF Solver for
— Unsteady incompressible Navier-Stokes
— Low mach number flows
— Heat transfer and species transport
— Incompressible magnetohydrodynamics

= Code:

— Open source
— Written in Fortran 77 and C

— MPI for parallelization

= Features:
— Highly scalable, scales to over a million processes
— High order spatial discretization using spectral elements
— High order semi-implicit time stepping

What is Nekbone?

Nekbone is a benchmark derived from Nek5000

— Developed by Katherine Heisey, Paul Fischer, and Scott Parker

Solves 3D Poisson problem in rectangular geometry
— Spectral Element method with Conjugate Gradient linear solver
— Large percentage of the work in Nek5000

— Represents key kernels and operation mix from Nek5000:
e matrix-matrix multiplication
* inner products
* nearest neighbor communication
e MPI_Allreduce

= Implemented using:
— Fortran 77, C, MPI, and OpenMP

= Used for
— Exascale co-design activities: DOE FastForward, DesignForward
— DOE machine acquisitions: CORAL systems

= Available at

— https://cesar.mcs.anl.gov/content/software/thermal hydraulics
— https://asc.linl.gov/CORAL-benchmarks/

Why Nekbone?

= System designers need representative applications to study
— HPC has unique characteristics

= In comparison to Nek5000 Nekbone is:
— More easily configurable
e Number of spectral elements per rank
e Polynomial order of element
— Quicker to run
e Run time is adjustable over a wide range
e Typical run time is a few seconds
— Allows multiple cases in one run
e Arange of elements can be specified
e Arange of polynomial orders can be specified
— More easily instrumented
— More easily modified

e Has ~8K lines of code vs 60k lines of code for Nek5000
e Re-implemented using other programming models: OpenMP, OpenACC, CUDA

Nekbone in a nutshell

cg() [loop 1->numCGlterations]
* solveM() [z(i) =r(i)]
* glsc3() [inner product]
* AllReduce()
* add2s1() [a(i) =c*a(i)+b(i)]
* ax()
* ax_e()
* local_grad3() [gradient]
* (3x) mxm()
* wr-ws-wt [wx(i) = f(g,ur,us,ut)]
* local_grad3_t() [gradient]
* (3x) mxm()
* (2x) add2()
* gs op() [ptp communication]
e add2s2() [a(i) =a(i) + c*b(i)]
* glsc3() [inner product]
* AllReduce
* add2s2() [a(i) =a(i) + c*b(i)]
* add2s2() [a(i) = a(i) + c*b(i)]
e glsc3() [inner product]
* AllIReduce

Bandwidth Bound

Network Bound

gs_op()

gs_gather() [while, out[j] = out[j] + in[i]]

pw_exec()
pw_exec_recvs() [MPI_Irecv]
gs_scatter() [while, outfj] = in[i]]
pw_exec_sends() [MPI_Isend]
comm_wait() [MPI_Waitall]
gs_gather() [while, out[j] = out[j] + in[i]]

gs_scatter() [while, out[j] = in[i]]

Nekbone Compute Performance Model

Routine Routine Routine Routine Data Code Loads | Stores FPOps
solveM copy z,r z(i)=r(i) N N 0
glsc3 r,c,z t=t+r(i)*c(i)*z(i) 3N 0 3N
gop mpi_allreduce
add2s1 p,z p(i)=C*p(i)*z(i) 2N N 2N
axi
ax_e
local_grad3
mxm p,ur,dxm1 N 0 2NN
mxm p,us,dxtm1 0 2NN
mxm p,ut,dxtmi 0 0 2NN
wrwswt g,ur,us,ut ur(i)=g(1,i)*ur(i)+g(2,i)*us(i)+g(3,i)*ut(i) | 6N 0 15N
us(i)=g(2,i)*ur(i)+g(4,i)*us(i)+g(5,i)*ut(i)
ut(i)=g(3,i)*ur(i)+g(5,i)*us(i)+g(6,i) *ut(i)
local_grad3_t
mxm w,ur,dxtm1 0 0 2N, *N
mxm t*,us,dxm1 0 0 2N, *N
add2 w,t w(i)=w(i)+t(i) 0 0 N
mxm t*,ut,dxm1 0 0 2N, *N
add2 w,t* w(i)=w(i)+t(i) 0 N N
gs_op
add2s2 w,p w(i)=w(i)+c*p(i) 2N N 2N
mask
glsc3 w,C,p t=t+w(i)*c(i)*p(i) 3N 0 3N
gop mpi_allreduce
add2s2 X,p x(i)=x(i)+C*p(i) 2N 2N
add2s2 rLw r(i)=r(i)+C*w(i) 2N 2N
glsc3 r,c,r t=t4+r(i)*c(i)*r(i) 2N 3N

Nekbone Compute Performance Model

Bytes Loaded/ FP Operations/
Routine Av Time [% Time |it Bytes Stored/it [it GB/s Gflop/s |Est time Err Ratio
Solver Time| 1.38E+01
rzero 2.16E-03 0.02% 0 67,108,864 0l 31.04 0.00 0.0024 1.11
copy 5.67E-03 0.04% 67,108,864 67,108,864 0 23.65 0.00 0.0048 0.84
glsc3a 6.02E-03 0.04%| 134,217,728 0 25,165,824 22.29 4.18 0.0048 0.80
gopa 2.81E-05 0.00% 0 0 0 0.00 0.00
solveM 4.59E-01 3.33% 67,108,864 67,108,864 0 29.27 0.00 0.4793 1.05
glsc3b 8.80E-01 6.40%| 201,326,592 0 25,165,824 22.87 2.86 0.7190 0.82
gopb 2.48E-03 0.02% 0 0 o 0.0 0.00 Model Time 7.51
add2s1 6.78E-01| 4.93%| 134,217,728| 67,108,864| 16,777,216] 29.69 2.47 0.7190, 1.06 | Actual Time 12.55
localgrad3 | 2.89E+00 20.98%| 67,108,864 0 805,306,368 232 27.89 0.3932[0.14] | Error Ratio 0.60
wWrwswt 9.31E-01 6.77%| 402,653,184 0 125,829,120, 43.23 13.51 1.4380 1.54
localgradt | 3.08E+00| 22.37% 0 67,108,864 822,083,584 2.18 26.71 0.4014 0.13
gsop 1.21E+00 8.78% 0 0 0 0.00 0.00
add2s2a 7.31E-01 5.31%| 134,217,728 67,108,864 16,777,216/ 27.53 2.29 0.7190 0.98
glsc3c 8.77E-01 6.37%| 201,326,592 0 25,165,824 22.95 2.87 0.7190 0.82
gopc 2.85E-03 0.02% 0 0 0 0.00 0.00
add2s2b 6.86E-01 4.98%| 134,217,728 67,108,864 16,777,216 29.35 2.45 0.7190 1.05
add2s2c 7.09E-01 5.15%| 134,217,728 67,108,864 16,777,216 28.41 2.37 0.7190 1.01
glsc3d 5.98E-01 4.35%| 134,217,728 0 25,165,824 22.44 4.21 0.4793 0.80
gopd 2.43E-03 0.02% 0 0 0 0.00 0.00

Nekbone Communication

= Point to Point Communication

— 26 send/receives per rank
e 8 vertex values sent/received (8 Bytes per message, for 512x16 case)
e 12 edges sent/received (128 Bytes per message, for 512x16 case)
e 6 faces sent/received (16,384 Bytes per message, for 512x16 case)

= Collective Communication

— Calls MPI_Allreduce 3 times per CG iteration

— 8 Byte (1 double) reduction per call

— 24 bytes per iteration

Nekbone Scaling on Mira

Grid Points per thread: ~10k
FLOP Rate: 9% of peak
Parallel Efficiency: 99%

Ranks | Threads | TFlops

512 64 9.5

1024 64 18.9

2048 64 36.9
4096 64 73.9
8192 64 150.5
16384 64 291.1
32768 64 606.9
49152 64 900.8

1000.0

900.0

800.0

700.0

600.0

500.0

TFlops

400.0

300.0

200.0

100.0

0.0

Weak Scaling Performance of Nekbone
P=o|deal el Actual

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Nodes

Typical Ratios on Representative BG/Q Runs

FLOPS/(Bytes Loaded & Stored) 0.94

Loaded Bytes/ Stored Bytes 4

FLOPS/AlIReduce 158,000,000

FLOPS/Pt2Pt Byte 4,744

FLOPS/MPI-Message 9,111,545
Memory Bound 45%
Compute Bound 35%
Point to Point Comm. 18%

Collective Comm. 2%

10

Adding OpenMP to Nekbone

= Adding OpenMP:
— Relatively straightforward: 90% trivial, 10% required detailed understanding
— Basic approach: partition element across threads
e Easy:
— Add a single OMP parallel region at top of cg() routine
— Modify routines (add2s2, glsc3, axi, etc) to take a range of elements as an arg
— Modify routines to use locally declared work arrays (ax_e)

e A bit more complex:
— Restructure gather/scatter maps for parallel execution

— Add synchronization and barriers around communication operations (gs_aux, pw_exec)

= |Impact:
— Little impact on compute performance
— Little impact on memory usage

— Some impact on communication performance, most noticeable at large scale
e Eliminates some data copies to/from MPI buffers
e Fewer messages sent

— Provides opportunity to overlap communication and computation

11

Nekbone on KNL

= Nekbone is up and running on KNL

Simulations and estimates of performance based on KNL specs
Run on pre-release KNL hardware
Performance as expected based on compute performance model

Tuning use of AVX-512 instructions
e Utilizing LIBXSMM for matrix multiplication

12

Next Steps

KNL Optimization

Programming Models
- CUDA
* OpenMP 4
* OpenACC
* RAIJA, Kokkos

Overlap computation and communication
* Communication kernel can be rewritten to send messages as soon as they are ready
* Element updates can be re-ordered to update process boundary elements first
* Process interior elements can updated simultaneous with communication operations

13

